

PII: S0040-4039(97)00576-5

Synthesis of α-D-C-Glucoside Employing Dichloroketene Cycloaddition and Baeyer-Villiger Oxidation

Jonghoon Oh

Department of Chemistry, Chonnam National University, Kwangju, 500-757, S. KOREA

Abstract: The cycloaddition of dichloroketene to glucal followed by Baeyer-Villiger oxidation gave a bicyclic γ -lactone, an α -D-C-glucoside, which was further transformed to glucitol under the Suárez protocol. © 1997 Elsevier Science Ltd.

Synthesis of C-glycosides attracted much research interest during the past years. Even though there are a number of efficient methods, the regio-and stereospecific C-glycosidaton is thought the area to be explored.¹⁴

Dichloroketene is known to react with enol ether to give a dichlorocyclobutanone in a regiospecific manner. Furthermore, the latter can be oxidized under the Baeyer-Villiger conditions to a lactone. Greene *et al.* used this chemistry to acyclic enol ether for the synthesis of natural product.^{5,6} Few study was known for the cycloaddition of dichloroketene to cyclic enol ether such as glucal to construct a bicyclic lactone. Herein, we wish to report a short synthetic method of *C*-glucoside using dichloroketene cycloaddition and Baeyer-Villiger oxidation.

Cycloaddition between dichloroketene (generated *in situ* from trichloroacetyl chloride and zinc-copper couple, Zn-Cu)⁵ and tri-O-benzyl-D-glucal gave a C-glucoside with cis C-1 and C-2 substituents. The cycloadduct was then converted to bicyclic lactone by Baeyer-Villiger oxidation (metachloroperoxybenzoic acid and sodium bicarbonate) and dechlorination (Zn, acetic acid) in 40% for three steps. The lactone was then reduced by diisobutylaluminum hydride (DIBAL-H) to a lactol in 85% yield and the latter was subject to the α -alkoxy oxyradical fragmentation under Suárez condition⁷ to give a C-glucoside having iodomethyl on C-1 and formate on C-2 in 90% yield. The cis relationship and the stereochemistry of C-1 and C-2 substituents were determined by measuring the coupling constants (dd, J = 7.9 Hz and 5.0 Hz) of the proton on C-2 at 5.20 ppm. The axial-axial and axial-equatorial couplings of proton on C-2 with the protons on C-3 and C-1, respectively, indicate the axial orientation of H-2 and the equatorial orientation of C-2 formate (OCHO).⁸ Since the cycloaddition is known to give a *cis* product, the iodomethyl group should have axial orientation, *cis* to the C-2 OCHO group. Based on the stereochemistry and the orientations of the substituents, the cycloaddition of dichloroketene to olefin took place from the α -face of glucal. The glycoside having iodomethyl group on C-1 was then subject to a radical reaction to give a C-1 methyl-D-glucitol drivative⁹ (for H-2, δ 5.07, dd, J = 9.3 Hz and 5.6 Hz)^{8,10} in 85% yield (Bu₃SnH-AIBN).

In conclusion, dichloroketene cycloaddition to glucal followed by Baeyer-Villiger oxidation provided a new

synthetic method for the α -D-C-glucoside.

Acknowledgment.

Financial support was provided by the Chonnam National University Research Foundation. The author thanks Dr. Cheol Hae Lee of the Korea Research Institute of Chemical Technology (KRICT) for his encouragement.

References and Notes

- 1. Postema, M. H. D. Tetrahdron 1992, 48, 8545-8599.
- 2. Hoffmann, P.; Ernst, B.; Hug, P.; Winkler, T. Tetrahedron Lett. 1989, 30, 6311-6314.
- 3. Geise, B.; Dupuis, J. Angew. Chem., Int. Ed. Engl. 1983, 22, 622-623.
- 4. Geise, B.; Witzl, T. Angew. Chem., Int. Ed. Engl. 1986, 25, 450-451.
- 5. de Azevedo, M. B. M.; Greene, A. E. J. Org. Chem. 1995, 60, 4940-4942.
- 6. Hamelin, O.; Deprés, J.-P.; Greene, A. E. J. Am. Chem. Soc. 1996, 118, 9992-9993.
- 7. Freire, R.; Morrero, J. J.; Rodríguez, M. S.; Suárez, E. Tetrahedron Lett. 1986, 27, 383-386.
- 8. For the coupling constants of the axial H-2, see reference 3 and 4.
- For the C-1 β-methyl glycoside, cf. Hanessian, S.; Martin, M.; Desai, R. C. J. Chem. Soc., Chem. Commun., 1986, 926-927.
- Spectral Data for the final product; mp 64-65 °C; IR (KBr) 1710 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 8.03 (s, 1 H), 7.26-7.55 (m, 13 H), 7.13-7.17 (m, 2 H), 5.07 (dd, J = 9.3, 5.6 Hz, 1 H), 4.49-4.80 (3 x ABq, 6 H), 4.34 (m, 1 H), 3.84 (t, J = 8.6 Hz, 1 H), 3.64-3.75 (m, 4 H), 1.24 (d, J = 7.1 Hz, 3 H); ¹³C NMR (CDCl₃, 125 MHz) δ 160.12, 138.07, 137.95, 137.86, 128.42, 128.38, 127.98, 127.88, 127.84, 127.78, 127.68, 79.58, 77.68, 74.96, 74.80, 73.50, 73.00, 71.81, 68.80, 68.50, 12.58.

(Received in Japan 27 February 1997; revised 19 March 1997; accepted 21 March 1997)